

MICROGRIDS II

Optimizing Microgrid Selection and Operation for Data Center Sustainability

by

<u>C Marnay@lbl.gov</u> - +1.510.486.7028 - http://der.lbl.gov

20 Oct 2008

HP Labs, Palo Alto CA

Outline

systemic analysis of building energy systems

- Distributed Energy Resources Customer Adoption Model
- data center example

DER-CAM Concept

rrrrr

Science

What is DER-CAM?

- Mixed Integer Linear Program (MILP), written in the General Algebraic Modeling System (GAMS®)
- minimizes annual energy costs (or carbon emissions or multiple objectives) of providing services on a microgrid level (typically buildings 250-2000 kW peak)
- produces pure technology neutral optimal results with highly variable run times
- used for more than 5 years by Berkeley Lab and under license by researchers in the US, Germany, Spain, Belgium, Japan, and Australia

SV Data Center

0			
	age of building	~3 years	
	floorspace	616 m ² (~6600 ft ²)	
	peak load	~1.8 MW	A PARTIE
	computing load	~800 kW	
	utilities (no NG load)	PG&E commercial	
	marginal emissions	140 g/kWh	

Available Equipment

discrete			CM-	fuel					
capacity (kW)			100	200		only integer			
sprint capacity			125	\ge					
installed costs (\$/kW)			2400	5005					
with heat recovery (\$/kW)			3000	5200		motum	allonio		
variable maintenance (ance (\$/I	kWh)	0.02	0.029				
	efficiency (%, HHV)			26	35				
lifetime (a)			20	10		cont	<u>inuous</u>		
ixed unavoidable costs (lead acid) thermal storage		flow battery	absorption chiller		solar thermal	PV			
	intercept costs (\$)	295	10000	0	2000	0	1000	1000	
	Capacity (\$/kW or \$/kWh)	193	100	2125/ 220	127	,	500	6675	
	lifetime (a)	5	17	10	15		15	20	

Electricity Balance Case E

Electricity Balance C & D

Conclusion

• DER-CAM provides a technology neutral optimal equipment choice & operating schedule under many possible objectives

Analysis of a Silicon Valley data center shows

 → virtually no options cost effective at full current costs
 →lower cost storage and PV subsidies can make them competitive and lower carbon footprint
 → dramatic PQR results at 125 \$/kW·a reliability value 1.6 MW of on-site generation & absorption cooling increased carbon footprint (as in most cases)

• DER-CAM approach can be extended to include full? range of technology options and objectives

Thank you!

Environmental Energy Technologies Division

12