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Outline

O systemic analysis of building energy systems
O Distributed Energy Resources Customer Adoption Model

O data center example
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DER-CAM Concept
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O Mixed Integer Linear Program (MILP), written in the
General Algebraic Modeling System (GAMS®)

O minimizes annual energy costs (or carbon emissions or
multiple objectives) of providing services on a microgrid
level (typically buildings 250-2000 kW peak)

O produces pure technology neutral optimal results with
highly variable run times

O used for more than 5 years by Berkeley Lab and under
license by researchers in the US, Germany, Spain,
Belgium, Japan, and Australia
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age of building ~3 years
floorspace 616 m? (~6600 ft?)
peak load ~1.8 MW
computing load ~800 kKW

sama—

utilities (no NG load) PG&E commercial
140 g/kWh

marginal emissions
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Available Equipment

. CM- | fuel | 7
discrete 100 | cell
capacity (kW) 100 | 200
sprint capacity 125 only integer
installed costs ($/kW) 2400 | 5005 installations
with heat recovery ($/kW) 3000 | 5200
variable maintenance ($/kWh) 0.02 | 0.029
efficiency (%, HHV) 26 35 )
lifetime (a) 20 [ 10 |- continUOUS
(xed Unavoideble | Gorge | hermal| fow | sosomton | i | py
~ (lead acid)
< ::'j)tjt':fg)t 295 (10000 O 20000 | 1000 | 1000
($/kW or 193 100 L 127 500 6675
lifetime (a) 5 17 10 15 15 20
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at full current E ZE2||8SE2|8x 22| =5
S c2 ) |lEZ2 a2 o E
technology costs = =3/ |22 =5 |S8& & 7
] equipment ~—
Tecogen 100 KW svith HY (kW) 0 0 0 /1600
switelh si1ze (W) n/a n/a n'a { 1788
abs. cluller (JOW 111 tenns of elactiieity) (141 108 116 \ 316/
solar thermal collector (KW n‘a ' 0 0 ~—0
PV (IcW) 0 0 /1577] 0
Electric storage (kW) 0 13478 \.6434] 0
thermnal storage (KWh) 0 0 0 0
annual costs (k$)
onsite DG technologies n/a 3.99 19551 467,12 249 306
Benefit from switch ($/kW/a) 1n/a n/a 1n/a n/a 12500
Total 1480.15] 1473.18 1442.59 1422.24 1443.10
Y% savings compared to do nothing n/a 0.47 2.54 391 2.50
annual energy consumption (GWh)
electricity 11.42 11.39 11.74 891 8.44
NG .00 0.23 0.15 0.12 914
annual carbon enussions (t/a)
eMISSIONS 1508 92| 1606.13 1650 98 125397 1632.06
%o savings compared to do nothing n/a -0.45 -3.206 (21.57] -2.07
N—
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T"m]EIectrluty Balance Case
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J Electricity Balance C & D

(July Weekday)
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Conclusion

O DER-CAM provides a technology neutral optimal equipment
choice & operating schedule under many possible objectives

O analysis of a Silicon Valley data center shows
— virtually no options cost effective at full current costs
—lower cost storage and PV subsidies can make them
competitive and lower carbon footprint
— dramatic PQR results at 125 $/kW-a reliability value
1.6 MW of on-site generation & absorption cooling
Increased carbon footprint (as in most cases)

O DER-CAM approach can be extended to include full? range
of technology options and objectives
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Thank you!
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